公告版位
晨晰統計顧問有限公司在板橋~~服務市話:02-29602817 手機:0918-276-622 聯絡信箱:raising.statistic@gmail.com。 網址:http://www.rai-stat.com.tw。 歡迎大家踴躍發問,問問題請用facebook問(http://tinyurl.com/raising100)會盡量回覆!

(2018)3月上旬參加數位時代所舉辦的「PowerBI圖像式資料分析」,雖然只有短短一天的課程,但對於在資料視覺化領域鑽研一段時間的人來說,仍可以有相當大的幫助。

話說微軟因應大數據分析需求,從Excel 2010開始,逐步增加各種增益集,像Power PivotPower ViewPower QueryPower Map等四大天王,給予使用者自助式商業智慧功能。到了Excel 2016,這些功能變為內建,使用更為方便(後二者更名為「新查詢」、「3D地圖」)

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

  近幾年已有越來越多醫學研究的研究設計採用配對法比較試驗組與對照組的差異,在眾多配對方式中,本篇文章簡單分享筆者較為常用的配對方式。

  在觀察型研究中,為了提升試驗組與對照組之間的可比較性(Comparability),將兩組的背景干擾變項(例如:年齡、性別、共病等)作配對,使兩組在試驗介入以外的其他變項達到均衡。配對後的兩組便能在假設無其他因素干擾之下,比較試驗介入本身對觀察結果的影響。當然,此項假設是理想的假設情境,實際上,配對只能考慮研究者有納入配對的變項,因此配對後的兩組只會在有配對的變項上達到平衡,研究者沒有考慮到的因素可能還是分佈不均衡的。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

完成對處置變項的羅吉斯迴歸之後,根據每個個案的基本特性(年齡、性別與共病狀況)會得到預測機率,即此人成為治療組的機率。在接著往下進行傾向分數的分析之前,要先評估治療組與控制組在傾向分數的分布情形。可以使用兩種方法來判斷,第一種是畫圖,第二種是看C-statistics(即C-indexAUROC)。C-statistics代表的是預測變項對處置變項(1=treated, 0=untreated)整體的區別力,0.5為完全無法區別,1代表完美區別。

下圖列出傾向分數可以非常有效區分治療組與控制組的結果,兩組在傾向分數的分布截然不同,而且重疊區域很少(中間灰色底的common support),這種狀況是很難進行後續的傾向分數分析的,不管進行任何一種傾向分數分析,都無法有效降低混淆因子的效果。當出現這種情形時,檢查是否有對處置變項的強烈預測變項,例如「有洗腎的病人一定不會開Metformin」或是存在工具變數。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

在現今的醫學研究中,傾向分數分析(propensity score analysis, PSA)儼然扮演非常重要的角色。下圖為筆者在Pubmed以關鍵字「propensity score」搜尋得到的文獻筆數,由結果可知,以傾向分數作為研究方法的文獻呈現非線性的增加,到了2017年,單年度超過3千篇文獻使用傾向分數,可見傾向分數已為醫學研究當中的顯學。

 

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

本篇文章將介紹針對結構方程常用的配適度指標作介紹,除了整理各指標的判斷標準及參考文獻之外,亦針對一些特殊的情況進行說明。

九、比較性配適指標(Comparative fit index, CFI

CFI類似於NFI,但對樣本數有加以懲罰,因此CFIRMSEA一樣較不受到樣本數大小的影響(Fan, Thompson, & Wang, 1999),即使在小樣本之下,CFI對模式配適度的估計表現仍相當好(Bentler, 1995)。CFI介於0~1之間,CFI指數越接近1代表模型契合度越理想,表示能夠有效改善中央性的程度。傳統上認為CFI0.9以上為良好配適(李茂能,2006;陳正昌、程炳林、陳新豐與劉子鍵,2003;張偉豪,2011)。而有學者認為要以大於.95為通過門檻,用來評估模式適配度才夠穩定(Bentler, 1995; Hu & Bentler, 1999; 邱皓政,2011),但1不代表是完美配適,只代表模型卡方值小於假設模型的自由度。CFI在巢型結構中也是個常用的指標,巢型結構模型中CFI差異的大小決定模型是否不同(Cheung & Rensvold, 2002)。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

本篇文章將介紹針對結構方程常用的配適度指標作介紹,除了整理各指標的判斷標準及參考文獻之外,亦針對一些特殊的情況進行說明。

 

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

本篇文章將介紹針對結構方程常用的配適度指標作介紹,除了整理各指標的判斷標準及參考文獻之外,亦針對一些特殊的情況進行說明。

一、卡方檢定(Chi square test

卡方值是SEM最原始的指標,因為它直接從ML估計法的函數【(N-1FML】計算而得。卡方值是愈小愈好,但也沒有一定的標準,因為卡方值不但會受到樣本數的影響,也會受到模型複雜度的影響,幾乎所有的模式都可能被拒絕(Bnetler & Bonett, 1980; Marsh & Hocevar, 1985; Marsh, Balla, & McDonald., 1988),算不上是實用的指標,因此顯少採用,但它是許多配適度指標的計算基礎,所以在SEM分析中需要呈現。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

SAS 2017/7/28出版的文件【SAS 9.4 新功能】中,介紹許多SAS 9.4M1到SAS 9.4M4的增強功能及調整。其中,在Proc Freq程序中,增強估計勝算比 (odds ratio, OR)的信賴區間。以下將透過簡單的範例玩玩這個功能。

首先,先以proc logistic的程序估計勝算比及勝算比的信賴區間,程式碼如下所示(Mortality=1為死亡):

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

(二)Points system

如上所述,nomogram不適用於解釋變項太多的情況(例如>10),當我們的多變項分析同時包括10個甚至15個變項時,此時則可以考慮以points system來呈現多變項模式的結果。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

多變項迴歸分析(Multivariable or multi-predictor regression analysis)指的是迴歸方程式中,同時有2個或2個以上的解釋變項,反應變項(Response variable, Y)則可能是各種尺度的變項,常見的有線性(連續變項)、二元、計數與存活資料等,分別適用線性迴歸(Linear regression)、羅吉斯迴歸(Logistic regression)、卜瓦松迴歸(Poisson regression)及Cox比例危險模型(Cox proportional hazard model)等。

呈現多變項分析結果最常見的方式就是列表,列出迴歸係數、勝算比或危險比的值、信賴區間以及顯著性,如下表所示。方程式除了列解釋變項的迴歸係數(或勝算比、危險比)之外,也列出截距項(Intercept or constant)的數值,以利讀者可以帶入特定值,以計算出預測的結果變項的數值,例如50歲男性且Creatinine0.8,此人的預測Y值是多少。預測Y值在線性迴歸跟卜瓦松迴歸代表的是平均值,在羅吉斯迴歸與Cox模型則是代表發生事件的機率。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

您尚未登入,將以訪客身份留言。亦可以上方服務帳號登入留言

請輸入暱稱 ( 最多顯示 6 個中文字元 )

請輸入標題 ( 最多顯示 9 個中文字元 )

請輸入內容 ( 最多 140 個中文字元 )

請輸入左方認證碼:

看不懂,換張圖

請輸入驗證碼