公告版位
晨晰統計顧問有限公司在新北市板橋\服務市話:02-29602817\手機:0918-276-622\信箱:raising.statistic@gmail.com\網址:http://www.rai-stat.com.tw

目前分類:生物醫學統計 (85)

瀏覽方式: 標題列表 簡短摘要

比較療效時常見的偏誤(Sharma 等人)

Sharma 等人於 2019 年在《Clinical Epidemiology》發表了一篇名為『Observational studies of treatment effectiveness: worthwhile or worthless?』的文章2,本篇文章所提到的偏誤以及處理方式並非針對醫學資料庫,而是對於所有的觀察型研究都適用,而且針對的是前瞻性世代研究(prospective cohort study)。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

醫學資料庫常見的偏誤(Franklin Schneeweiss

  • 因果關係錯置

這是指因(介入/處置)與果(結果變項)在時間軸上的錯置,偏誤來源來自於事實上是結果變項決定了之後要做何種介入(或醫療選擇)。這種偏誤的處理方式很簡單,只要確認結果變項是發生在介入之後即可,亦即追蹤時間是從介入開始算。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

醫學資料庫研究目前佔目前醫學研究相當大宗,由於資料在研究想法產生之前就已經存在,而不需要再收案或追蹤,一旦可以有權限使用資料時,可以快速地做資料處理及統計分析進而發表,甚至搶先在臨床試驗之前就先有真實世界數據(real world data)的結果。

 

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

              真實世界數據(real-world data; RWD)在目前幾年變的非常流行,下圖列出在PubMed搜尋RWDReal-world evidence(真實世界證據,以下簡稱為RWE)關鍵字的文獻數量,在最近幾年急速飆漲。

 

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

  2019/1/19由林口長庚醫院的巨量資料及統計中心主辦「臨床資料庫的建立和應用研討會」,會議中邀請許多學者分享醫療院所整合的資料庫,分別有以下五種醫學研究資料:

  1. 長庚醫學與研究資料庫
  2. 彙整台大醫院及台大所屬的各級分院所形成的「臺大醫療整合資料庫」
  3. 彙整北醫、萬芳、雙和三家醫院的「北醫體系臨床資料庫」
  4. 中國醫附設醫院的臨床資料,並完成串連衛生福利部死因檔的「中國醫臨床資料庫」
  5. 早產兒基金會運用台灣極低出生體重早產兒聯合追蹤網(TPFN)的資訊建構的「台灣早產兒基金會資料庫」

 

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

筆者曾於 2017/11 發表的兩篇文章(https://reurl.cc/n112lhttps://reurl.cc/x992e),提到在醫學研究中如何執行敏感度分析(Sensitivity analysis),不過當時筆者引用的 BMC Medical Research Methodology 論文(https://reurl.cc/0ppeA),比較偏重在於資料分析的觀點,本篇文章則嘗試以臨床觀點(from clinical points of view)來描述敏感度分析的應用方式。

 

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

在醫學論文中,在內文、表格與圖形中,必然會有數字的呈現,那麼這些數字的小數點應該取到第幾位是最合適的呢?

若以呈現最精確的數據訊息為主要目的,那麼小數點理應是取越多位越精確。然而,當不必要的小數點取太多位時,會讓讀者注意力受到影響,不易立即理解到數字的大小;反之,小數點取的位數不夠,則可能會失去精確性,甚至被懷疑是否作者是故意隱匿資訊。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

在前兩篇文章中,我們分別介紹了整體表現(overall performance)以及區別/鑑別(discrimination)的指標以及其使用上的限制。為了回答以下兩個臨床問題,即(1)新模式是否比舊模式更能預測結果變項/事件發生?或新模式的預測是否準確?(2)在新模式的預測之下,是否可以改變治療決策(medical decision)?分別要再採用校正/校準(calibration)以及風險重新分組(reclassification)此兩組指標。

(三)校正/校準(calibration

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

在前一篇文章中,我們介紹了整體表現(overall performance)的各項指標以及使用上的限制,在這篇文章中,我們繼續介紹區別/鑑別(discrimination)、校正/校準(calibration)以及風險重新分組(reclassification)此三組指標。

(二)區別/鑑別(discrimination

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

在各種類的醫學研究中,建立以及驗證一個有效的預測模型(prediction model)是很常見的,無論結果變項(outcome)是連續型、二元類別、計數變項或是存活資料,現在皆已有常規的迴歸分析方法,分別是線性迴歸、logistic迴歸、Poisson迴歸以及Cox比例危險模式(Cox proportional hazard model)。

舉例來說,目前已知數個心衰竭病人死亡率的預測模式,例如MAGGIChttps://www.mdcalc.com/maggic-risk-calculator-heart-failure)或Seattle Heart Failure Modelhttps://qxmd.com/calculate/calculator_203/seattle-heart-failure-model),假定我們在這些預測模型之下,提出一個(或多個)生物標記或是一組危險因子,我們想要證實加上這些生物標記/危險因子之後,我們的新模式會比原本模式更能預測死亡率。

晨晰部落格新站 發表在 痞客邦 留言(1) 人氣()

在前兩篇文章中,我們介紹了曲線下面積(Area under the curve, AUC)與integrated discrimination improvementIDI)的定義以及使用上的限制。為了回答此問題:「A這個生物標記或預測模型,所增加的預測能力若使用在臨床上,究竟是否可以改變治療決策?」,Pencina2008)首次提出net reclassification improvementNRI)這個指標以及展示它的統計檢定1

在使用NRI之前,必須有個很重要的前提,亦即關於該事件的預測機率已有明確的風險分組。例如根據Third Adult Treatment PanelATP III)將10年冠心病的風險(10-year risk of coronary heart disease)明確分為3組:0%–6%6%–20%>20%,針對不同風險分組會有不同的治療決策,例如0-6%只要保持定期追蹤,6%–20%則是改變生活方式與藥物治療,而>20%則可能要接受更積極的監測與治療。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

在之前文章中,我們提到了在以下幾種情況,過去常以Receiver Operating CharacteristicROC)的曲線下面積(Area under the curve, AUC)作為主要的統計方法以及其限制1-2

假設已知有個表現良好的生物標記B(或是一組危險因子,例如Framingham Risk Score),此時我們提議(proposed)的生物標記或預測模型(或一組危險因子)為A,可能會有以下幾種的比較。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

        8月舉辦於嘉義長庚醫院的實證醫學年會,主題探討大數據、人工智慧對醫學研究與實證醫學的影響。會中由李友專院長淺談人工智慧的發展沿革,以及目前在醫學領域應用較為廣泛的人工智慧型態,例如:圖像判讀或分組、決策樹(decision tree)、人工神經網路(artificial neural network, ANN)、深度學習(deep learning)、機器學習(machine learning, ML)等。李院長的演講作為導言,以輕鬆詼諧的方式,簡單讓與會者像聽歷史故事一般接觸人工智慧的發展史,並從中帶出人工智慧在過去遭遇的挫折與困境 (例如硬體設備的計算效率不佳)。隨著科技時代的進步,電腦硬體與時俱進,形成現今人工智慧發展的優勢環境,足以支援更複雜演算法與更大量的資料點。

        李院長精彩的演說引人入勝,讓筆者會後更為好奇,人工智慧目前在醫學研究方面是如何被應用與執行的?以及人工智慧的基本概念有些什麼?故筆者搜尋了一些介紹人工智慧的網站,以及一些運用或探討人工智慧的醫學論文。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

在臨床醫學研究中,常常會提出一個生物標記(Biomarker)可以預測特定事件的假設,例如以neutrophil gelatinase-associated lipocalinNGAL)預測急性腎損傷(acute kidney injury, AKI),或是以B-type natriuretic peptideBNP)預測心衰竭病人的再住院率。

通常此時會有比較的基準,假設已知有個表現良好的生物標記B(或是一組危險因子,例如Framingham Risk Score),此時我們提議(proposed)的生物標記或預測模型(或一組危險因子)為A,可能會有以下幾種的比較。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

在觀察型研究當中,傾向分數分析(propensity score analysis)的使用,特別是傾向分數配對(propensity score matching)已經是非常普遍,這個部分可參見筆者在之前寫的文章(https://reurl.cc/qd8xg 以及  https://reurl.cc/V6Xr5)。關於傾向分數配對的技術與介紹,網路上已經有非常多資源(可參見筆者同事撰寫的一系列文章(https://reurl.cc/E7z3Rhttps://reurl.cc/WdL5D以及https://reurl.cc/O1qlv),但目前比較少人討論在傾向分數配對後的統計方法。

理論上,在同一個配對組合(matched pair)之下的實驗組與對照組(或暴露組與非暴露組),由於他們有很接近的傾向分數(成為實驗組/暴露組的機率),因此他們在用來計算傾向分數的基本屬性上(例如年齡、性別、共病等)也會比較相近,因此此時的實驗組與對照組不再是「獨立樣本」,而是具有相依性的配對樣本(paired sample1

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

目前欲作健保資料庫有三種管道,第一種是以國衛院時代的攜出健保資料庫,其資料只到2013年就停止更新了;第二種是衛生福利資料科學中心,俗稱加值中心,資料更新約延遲1.52年左右;第三種是全民健康保險保險人資訊整合應用服務中心,資料更新約延遲1年。最近常聽到一種聲音,就是知名雜誌越來越不願意接受國衛院的攜出健保資料庫,但筆者的實際經驗似乎相左。

因此筆者使用國立成功大學健康資料加值應用研究中心的健保資料庫搜尋網站(https://visualizinghealthdata.idv.tw/?route=article/thesis),搜尋方式為「限定impact factor > 5」(以2016 JCR的分數),結果有743篇(更新時間 : 2018-06-27),其中43篇為於2018年發表,筆者由摘要中找尋「追蹤截止日期」的相關資訊。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

  延續上一章節,本篇將持續透過官方範例檔與示範程式(如下圖所示),簡介程序實際操作之後產出的報表,以及報表中各項目的涵義。  

  執行完上段程序後,首先產出的報表會描述進行傾向分數配對的變數細節(如下圖所示)。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

  呈上個章節簡單介紹觀察型研究中的存活偏誤(Survival bias),本章節導讀文獻中提出的常見的5種研究設計方法,前2種會受到存活偏誤(Survival bias)影響,導致研究結果產生傾向於某一方有優勢,後3種為控制存活偏誤(Survival bias)的研究設計方法,以下將逐一介紹。

 

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

  觀察型研究中,由於介入/治療行為並非由研究者施予及分組,非受試者與受試者在受到其他許多背景、環境等因素操弄之下,而形成他們在研究中被觀察到的組別或治療型態。而醫學研究中,常見的觀察性研究資料類型多數為病歷回顧或是資料庫形式。當研究者從現有的資料集中萃取研究個案將其分組,並觀察追蹤期間的結果時,會因為【分組】這個動作而產生存活偏誤(Survival bias),或是不死的時間偏誤(Immortal time bias)。舉例來說,研究者從現有資料庫中篩選出一群急性心肌梗塞(AMI)的病人,看病人出院後90天內的Statin藥物使用狀況,將病人分成Statin組跟Non-statin組,並觀察病人從AMI出院之後發生AMI再住院或死亡的風險。這看似順風順水的研究設計,潛藏著一個干擾觀察結果的偏誤(bias),出院後90天內因為有使用Statin而被分到Statin組的人,從病人出院到使用Statin的這段時間是保證存活(意即活著的人才有機會被開Statin),因為死亡而來不及使用Statin的人就會被分到Non-statin組。在比較Statin與Non-statin組在AMI出院之後的AMI再住院與死亡時,就可能會發現Non-statin組死亡率比較高且AMI再住院率比較低,這是因為死亡而來不及用藥的人都在Non-statin組,而死亡的人也比較不容易被觀察到AMI的再住院,這個現象就稱為不死的時間偏誤(Immortal time bias)。

  流行病學研究設計中,有幾種處理不死的時間偏誤(Immortal time bias)的方式,以下援引American Journal of Epidemiology於2005年介紹的5種研究設計方式,其中方法1跟方法2都是會強烈受到偏誤(bias)影響研究結果,而方法3~5則是控制偏誤(bias)的方式,下一章節將逐一導讀介紹文獻中的5種研究設計方法,以及這5種研究設計之下對結果產生的影響。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

完成對處置變項的羅吉斯迴歸之後,根據每個個案的基本特性(年齡、性別與共病狀況)會得到預測機率,即此人成為治療組的機率。在接著往下進行傾向分數的分析之前,要先評估治療組與控制組在傾向分數的分布情形。可以使用兩種方法來判斷,第一種是畫圖,第二種是看C-statistics(即C-indexAUROC)。C-statistics代表的是預測變項對處置變項(1=treated, 0=untreated)整體的區別力,0.5為完全無法區別,1代表完美區別。

下圖列出傾向分數可以非常有效區分治療組與控制組的結果,兩組在傾向分數的分布截然不同,而且重疊區域很少(中間灰色底的common support),這種狀況是很難進行後續的傾向分數分析的,不管進行任何一種傾向分數分析,都無法有效降低混淆因子的效果。當出現這種情形時,檢查是否有對處置變項的強烈預測變項,例如「有洗腎的病人一定不會開Metformin」或是存在工具變數。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

1 2345

您尚未登入,將以訪客身份留言。亦可以上方服務帳號登入留言

請輸入暱稱 ( 最多顯示 6 個中文字元 )

請輸入標題 ( 最多顯示 9 個中文字元 )

請輸入內容 ( 最多 140 個中文字元 )

請輸入左方認證碼:

看不懂,換張圖

請輸入驗證碼