公告版位
晨晰統計顧問有限公司在新北市板橋\服務市話:02-29602817\手機:0918-276-622\信箱:raising.statistic@gmail.com\網址:http://www.rai-stat.com.tw

當要進行兩組的分數比較時,最直覺的聯想就是進行獨立樣本t檢定,歸類在有母數的推論性統計,之前文章提到過,進行獨立樣本t檢定前有三項假設需先符合:(1)常態性、(2)樣本獨立性、(3)變異數同質性。其中樣本獨立性在抽樣適宜的情況下,大致都能符合,但常態性與變異數同質性就得看資料的狀況,透過檢驗才會知道,通常在樣本數小時容易違反。因此就會發現在某些情況下(包含小樣本、依變項不符合常態、依變項為順續變項)時,不太適合有母數統計,而必須改用無母數分析。

常用的幾種有母數分析中,都可以找到對應的無母數統計,這篇文章先介紹兩組獨立樣本的比較,曼-惠特尼U考驗Mann-Whitney U-test),至於多組獨立樣本比較、兩組相依樣本比較等,將在日後依序介紹。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()


晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

 

CatBoostCategory Boosting)是由俄羅斯搜索引擎Yandex2018年開源的一個基於梯度提升(Gradient Boosting)的機器學習演算法。該演算法主要針對分類數據(categorical data)的處理進行了優化,特別在處理稀疏數據和高維度分類數據時展現了出色的性能。它是目前業界較為流行的提升方法之一,被廣泛應用於許多機器學習和數據科學領域。

1. 什麼是梯度提升?

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

 

當研究要針對不同族群對象進行分析時,可以使用資料功能列中的「選取觀察值」或「分割檔案」來進行,不過由於「選取觀察值」是在條件中選取每一組的對象出來分析,並不是像「分割檔案」可以一次輸出個別組別的資料,因此以「分割檔案」的效率表現較佳,這部分的操作說明,可以參考過去的教學文章,網址如下。https://dasanlin888.pixnet.net/blog/post/569598584

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

 

我們2025的線上統計課程喔,報名網址,歡迎大家踴躍參加!!!

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

              在當前的人工智能(AI)和機器學習(ML)領域,模型的透明性與可解釋性愈加重要。隨著這些模型廣泛應用於決策過程中,從醫療診斷到金融風險評估,理解模型如何做出決策變得至關重要。SHAPSHapley 加法解釋)值因此應運而生,旨在滿足這一需求。SHAP 值是一種基於合作博弈論的解釋方法,它將模型的輸出分解為各個特徵的貢獻,幫助用戶更好地理解模型的運行機制。

 

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

 操作(有關鍵變數-兩檔案皆提供觀察值):

8)為了按照編號來合併兩個檔案,先勾選「匹配已排序檔案關鍵變數的觀察值」,預設值為「兩者皆提供觀察值」,代表就算兩邊檔案收錄的樣本不完全相同,無論以國語成績或是數學成績的頁面來操作,所有樣本最後都會一同留置在新的資料集中。

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

這篇文章要來教大家實用的資料處理-合併資料,過去在接收客戶的資料時,常常遇到客戶將資料建檔在不同的資料集中,有些是按照不同的測驗階段分別建立,有些則按照問卷不同部分分別建立,但無論如果建立檔案,最後都必須整併在同一個檔案之下才方便進行分析,此時就需要用到合併資料的功能。此次示範的兩個檔案(如下圖),一個為國語成績,共7名樣本,編號為ID1ID7,另一個為數學成績,共7名樣本,編號為ID4ID10,因此兩個檔案的交集樣本為ID4ID7,共4名樣本,在操作選項中,有4種不一樣的設定,下面將一一說明。

 

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

在數據科學和人工智慧迅速發展的今天,機器學習和統計學已成為各行各業中的重要技能。不過,這些領域的學習資源繁多且分散,對於初學者而言,選擇適合的學習平台和內容至關重要。本文將推薦兩個極具價值的學習資源:吳恩達教授的機器學習課程和YouTube頻道「StatQuest with Josh Starmer」,這些資源將幫助讀者更系統地掌握機器學習和統計學的基礎知識和實踐技能。

一、吳恩達教授的機器學習課程

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

集成學習是一種通過結合多個模型來提升機器學習預測性能的方法。相較於單一模型,集成學習能產生更準確且穩定的結果,其核心理念是訓練一組分類器(或專家),並通過集體投票來決策。Bagging 和 Boosting 是集成學習中常見的兩種技術,這兩者都能減少單一模型的方差,從而提升模型的穩定性。Bagging跟Boosting 同為同質弱學習器模型,但其工作方式不同,我們將深入探討這兩者之間的差異。

 

晨晰部落格新站 發表在 痞客邦 留言(0) 人氣()

Close

您尚未登入,將以訪客身份留言。亦可以上方服務帳號登入留言

請輸入暱稱 ( 最多顯示 6 個中文字元 )

請輸入標題 ( 最多顯示 9 個中文字元 )

請輸入內容 ( 最多 140 個中文字元 )

reload

請輸入左方認證碼:

看不懂,換張圖

請輸入驗證碼